Introduction aux impacts environnementaux du numérique

D’après un article disponible sur le blog 1024 et sur HAL

Kevin Marquet Univ Lyon, INSA Lyon, Inria, CITI
Françoise Berthoud CNRS, GRICAD, Grenoble
Jacques Combaz CNRS, Verimag, Grenoble

(Pour les références, nous vous renvoyons à l’article en lien ci-dessus)

Notre civilisation fait aujourd’hui face à plusieurs menaces majeures qui sont le résultat de l’activité humaine : le réchauffement climatique, l’érosion de la biodiversité qui est considérée comme la sixième extinction de masse des espèces, l’épuisement progressif des ressources naturelles, la dégradation des sols, etc. Dans le cadre de la COP21 de 2015 et des accords de Paris, les états se sont engagés à réduire les émissions de gaz à effet de serre afin de maintenir d’ici 2100 la hausse de la température mondiale en dessous de 2°C par rapport à l’ère pré-industrielle, ce qui implique en particulier de décarboner massivement et sans plus attendre notre énergie, mais aussi de maîtriser nos besoins énergétiques. Comme nous le verrons dans ce qui suit, le numérique n’est pas à ce jour la révolution attendue pour décarboner ou dématérialiser notre économie, mais bien au contraire un poste de consommation supplémentaire [18], voire un amplificateur des impacts environnementaux des autres secteurs de l’économie. À partir de ce constat, nous proposerons quelques pistes de réflexion et d’action dans le domaine de la recherche et de la formation pour réduire les impacts négatifs du numérique.

Impacts environnementaux directs

La participation du numérique aux problèmes environnementaux est difficile à appréhender. D’abord parce que ses principales contributions ont souvent lieu hors de notre territoire. Ensuite parce que la transition numérique a opéré dans quasiment tous les secteurs d’activité, si bien qu’il faudrait presque tous les étudier. Aussi immatériel et virtuel qu’il puisse nous apparaître, le monde numérique repose sur un ensemble d’équipements dont l’existence est bien tangible et dont les impacts environnementaux dus à leur fabrication, leur transport, leur usage et leur traitement en fin de vie sont tout aussi réels. Dans cette première partie nous proposons un panorama des impacts majeurs des différentes phases du cycle de vie des appareils numériques.

Énergie


L’énergie est nécessaire non seulement pour le fonctionnement électrique des différents appareils électroniques (voir Figure 1 ; terminaux = ordinateurs personnels fixes et portables, tablettes, smartphones, téléphones portables traditionnels, box d’accès à internet, équipements audiovisuels connectés), mais aussi pour leur fabrication, leur transport et leur traitement en fin de vie. Contrairement à une croyance bien installée, l’énergie consommée pendant la phase d’usage des équipements n’est pas prédominante. La Table 1 donne le ratio du coût énergétique de la phase d’utilisation par rapport à la phase de production de divers appareils. À noter que ces ratios n’incluent pas la consommation des infrastructures réseau (calcul, stockage,routage, etc.) permettant d’accéder à divers contenus (mails, vidéos, documents partagés, etc.). Lorsque cette dernière est prise en compte ce ratio peut monter jusqu’à 50 % environ en fonction des usages internet et/ou du réseau local.

Ratio Usage/Production Énergie Émissions GES
    France Europe USA Chine
Smartphone (2 ans) 6% 0,3 % 2,6 % 4,5 % 6,2 %
Laptop (3 ans) 11% 0,4 % 2,9 % 5,1 % 6,9 %
Serveur 50 %
TV connectée 1,1 % 8,9 % 15,0 % 19,5 %

Table 1 – Énergie consommée et gaz à effet de serre induits par les phases de production et d’usage de quelques équipements. Sources : [18] et calculs des auteurs. Par exemple, en France la phase d’usage d’un smartphone n’est responsable que de 0,3 % des émissions de GES sur tout son cycle de vie.

Aujourd’hui, les Technologies de l’Information et de la Communication (TIC) (équipements terminaux dont téléviseurs, équipements réseau, serveurs et leur environnement) sont responsables d’au moins 10 % de la consommation électrique mondiale [18], si l’on considère les phases de production et d’usage. Si l’on élargit le périmètre à toutes les formes d’énergies, la part des TIC est alors de 3,3 %. Bien que significative, cette valeur est relativement faible par rapport à d’autres secteurs comme les transports, la production d’énergie, l’agriculture ou le logement. Mais, alors que le taux de croissance de la consommation énergétique globale est de 3 %, celui de la consommation énergétique du secteur du numérique est de l’ordre de 8 %, ce qui signifie un doublement tous les 9 ans.

Figure 1 – Répartition de la consommation électrique nécessaire à la production et au fonctionnement des appareils numériques, d’après [18]

Métaux

Produire des équipements numériques consomme de l’énergie mais aussi de nombreux matériaux, et en particulier des métaux. La petite taille des appareils laisse penser que la quantité utilisée est faible, en comparaison des volumes de métaux structurels utilisés dans le bâtiment par exemple. Bien qu’exacte, cette intuition doit être relativisée par l’explosion du nombre d’appareils : durant les 5 dernières années ont été mis sur le marché mondial 4,5 milliards de  smartphones, 106 millions de PCs, 163 millions d’ordinateurs portables, 120 millions de tablettes, 454 millions de téléviseurs et 227 millions de moniteurs (source statista).

Comme l’illustre la Table 2, la production de ces appareils est donc la principale source de consommation de certains métaux. Les technologies numériques se démarquent aussi par la diversité des métaux employés, dont certains métaux précieux (or, argent, palladium, etc.). Par exemple, la fabrication d’un smartphone fait intervenir une cinquantaine de métaux [23] (et plus généralement 70 matériaux différents).

Métal Production totale en tonnes (2013) Part du secteur électronique Exemples d’utilisation
Cuivre 18,7 millions t. 6 % 3% équipement, 3% telecoms
Étain 296 000 35% Brasures
Antimoine 160 000 <20% Retardateurs de flammes : 35%
Ruthérium 30 55% Disques durs
Tantale 1400 60 % Condensateurs
Indium 800 80% Écrans
Gallium 440 90% Circuits intégrés
Germanium 160 30-50 % Circuits intégrés
Lithium 36 000 20% Batteries
Cobalt 112 000 35% Batteries
Cuivre 18,7 millions t. 6 % 3% équipement, 3% telecoms
Table 2 – Le poids des TIC dans la demande de quelques métaux. Sources : [16] et [17].

En conséquence, mais aussi à cause de la pénétration du numérique dans d’autres secteurs comme celui de l’automobile ou de la production de l’énergie, la demande pour une grande part des métaux impliqués dans la fabrication des composants électroniques est exponentielle, suivant des taux allant de +3 à +12 %. Dans le même temps, la concentration en métal dans les minerais concernés ne cesse de décroître. Par exemple, la teneur en cuivre, qui est nécessaire entre autres à la production de câbles, n’est plus que d’environ 0,7 % dans les minerais des sous-sols exploités [4, 34] contre 3% en 1900, pour une demande toujours croissante. Cela signifie qu’il faut extraire 1 tonne de minerais pour produire 7 kg de cuivre (contre 240 kg en 1900), et cette tendance est la même pour la plupart des métaux. La quantité d’énergie nécessaire pour extraire un métal augmente en principe exponentiellement avec la baisse de sa concentration. Pourtant, on observe historiquement l’inverse dans plusieurs cas, notamment pour les métaux structurels comme le cuivre ou le fer.
Ceci est lié aux améliorations technologiques successives dans le domaine de l’extraction minière. Toutefois, cette amélioration de l’efficacité énergétique des processus d’extraction ne pourra pas être plus faible que la limite thermodynamique (minimum de l’énergie nécessaire pour récupérer l’atome de métal de son oxyde) qui est sur le point d’être atteinte pour certains métaux comme l’aluminium ou le fer. Lorsque ce sera le cas (et même avant cela en réalité), l’énergie nécessaire à l’extraction ne pourra qu’augmenter avec la diminution de la concentration.

Les besoins du numérique participent donc à l’épuisement de certaines ressources. Par exemple, au rythme actuel de croissance de la demande (pas seulement pour le secteur de l’informatique) les réserves seraient de 15 ans pour l’étain, de 16 ans pour l’or, de 20 ans pour l’argent, ou encore de 39 ans pour le cuivre [6]. Cependant, ces estimations doivent être prises avec précaution puisqu’elles ne tiennent compte que des réserves connues sans considérer les futures découvertes, les améliorations technologiques, ou les évolutions économiques. Par ailleurs, bien que de nombreux éléments impliqués dans la fabrication des équipements numériques devraient atteindre leur pic de production dans les années ou décennies à venir (pour le cuivre [25]), il est aujourd’hui très difficile de savoir lesquels sont, ou seront irremplaçables (On peut trouver diverses infos sur les substitutions de matériaux dans le rapport annuel de l’US Geological Survey [26] et lire [13] que certains semi-conducteurs organiques vont remplacer divers éléments semi-conducteurs, notamment le gallium, le germanium, l’indium, le cadmium, le sélénium, l’arsenic et l’antimoine). Il convient aussi de noter que la pollution induite par les procédés d’extraction et de fabrication engendre des problèmes finalement plus importants que la disparition des ressources. C’est d’ailleurs également le cas pour la production énergétique : si l’on consommait l’intégralité des réserves connues en hydrocarbures, la température terrestre augmenterait de 16°C [12]. La finitude des ressources n’est donc pas le premier facteur limitant.

Pollution

Les pollutions engendrées par le numérique sont essentiellement de deux ordres : celles liées aux émissions de gaz à effet de serre dues principalement à la production de l’énergie utilisée, et celles liées aux procédés industriels utilisés dans les différentes phases du cycle de vie de ces équipements.

Le taux de croissance des émissions de GES dues au numérique est d’environ 8 % par an, si bien que leur part dans les émissions totales a augmenté de moitié de 2013 à 2017, passant de 2,5 % à 3,7 %. Cette part devrait se situer aux alentours de 4 % au cours de l’année 2019, ce qui représente une fois et demi celle du secteur de l’aviation (qui était de 2,8 % en 2016 [Calculs des auteurs selon l’agence internationale de l’énergie]). Les projections du Shift Project [18] indiquent que la quantité de GES émis pour le secteur du numérique devrait être en 2025 du même ordre de grandeur que celle du secteur automobile aujourd’hui.

L’urgence climatique tend à focaliser notre attention sur les émissions de GES, mais l’extraction et le raffinage des métaux puis la production des composants nécessaires à la réalisation des équipements électroniques ainsi que leur recyclage sont des sources considérables de pollution. Chaque fois que les conditions environnementales des sites d’extraction, de fabrication ou de recyclage ne sont pas optimales, ce sont des métaux lourds (cuivre, nickel, zinc, étain, plomb, arsenic, gallium, germanium, indium, mercure, sélénium, thallium), des phtalates (plastifiants), des solvants, composés chimiques perfluorés, dioxine, furane et autres métaux ou composés chimiques qui sont déversés directement dans le sol, les eaux ou qui polluent l’air. Ce type de pollution est locale contrairement aux GES qui ont un effet global. Pour autant, leurs impacts sur la qualité de l’air, des sols, et de l’eau ont de graves répercutions sur la santé des populations locales et contribuent à l’érosion de la biodiversité.

Considérations socio-environnementales

Les impacts directs liés à l’exploitation des ressources pour la production des équipements numériques ne se limitent pas aux émissions de gaz à effet de serre et à la pollution. Les implications sociales de l’accès aux ressources posent également question. Le sous-sol français regorge de certains métaux rares que l’on se refuse d’exploiter en partie à cause de la pollution que cela induirait. D’autres pays acceptent en revanche cette pollution pour des raisons géopolitiques [27] ou économiques.
Dans certains cas les ressources sont obtenues via l’exploitation de la population locale, et/ou sont à l’origine de conflits d’accès à l’eau (utilisée dans les processus d’extraction) ou aux ressources elles-mêmes (par exemple les conflits armés en République Démocratique du Congo, en lien avec la production du tantale, ont déjà fait 6 millions de morts. Enfin, la gestion de la fin de vie des équipements (recyclage, destruction) est aussi un énorme enjeu. Dans le monde, seulement 20 % (en poids) des déchets d’équipements électriques et électroniques sont traités par des filières de recyclage identifiées [31]. En France, ce taux est porté à 50 %. Aujourd’hui, la difficulté à réparer des appareils de plus en plus complexes mais aussi les diverses sources d’obsolescence nous incitent à un renouvellement toujours plus rapide de notre matériel électronique. Ainsi, un smartphone est remplacé après 2 à 2,5 années [5, 18] en moyenne (88 % sont changés alors qu’ils fonctionnent encore [19]), 3 à 5 ans [18] pour un ordinateur portable, 5 ans pour un ordinateur fixe. L’allongement de la durée de vie des équipements est une des principales préconisations pour diminuer les impacts environnementaux des TIC [20, 18].

Usages du numérique

Dans la phase d’usage, la plus grande part de la dépense énergétique est le fait du stockage et de l’acheminement des données, c’est-à-dire des datacentres et des réseaux [15], sachant que le trafic réseau est en augmentation de 26 % par an ce qui est considérable. Selon cisco, aujourd’hui 70 à 80 % du volume de données qui circule sur les réseaux est induit par la vidéo. Donnons quelques ordres de grandeur de cette face cachée du numérique.
– Dix minutes de streaming vidéo haute définition équivaut à utiliser à pleine puissance pendant 5 minutes un four électrique de 2000W [18].
– L’Ademe [2] estimait en 2011 que l’envoi d’un courriel contenant une pièce jointe de 1 Mo provoquait en moyenne l’émission d’environ 20g de GES, soit l’équivalent libéré par la combustion du carburant nécessaire à la réalisation de 200m en voiture.

Effets indirects

Face aux impacts environnementaux évoqués en première partie de ce document, il est tentant de faire confiance à la capacité des ingénieurs et des scientifiques à optimiser les systèmes informatiques afin de réduire ces impacts.

Cet enthousiasme s’estompe rapidement dès que l’on se penche sur l’histoire de l’informatique. En général, les progrès réalisés dans ce domaine ne permettent pas de compenser la demande toujours croissante mais participent à renforcer cette dernière. Ainsi, jusqu’à récemment, la quantité d’énergie nécessaire à la réalisation d’un calcul était divisée par deux tous les 18 mois, et ce depuis l’avènement du premier ordinateur électronique dans les années 1950 (Loi de Koomey, Wikipedia). Pourtant la consommation énergétique et la pollution dues aux produits électroniques se sont envolées pendant cette même période [30, 28], ce qui montre qu’on ne peut pas se contenter d’optimisations unitaires en intensité énergétique pour infléchir la consommation globale.


La transition numérique permet de substituer des produits ou services par leurs équivalents numériques. Nous l’avons vu, le coût énergétique de fonctionnement, d’entretien, de production des TIC est loin d’être négligeable, si bien que les promesses de dématérialisation de la transition numérique ne se sont toujours pas concrétisées. Quand ils existent, les gains environnementaux liés à la numérisation sont atténués du fait des effets de rematérialisation, qu’ils soient induits ou rebond. Par exemple, certaines études montrent que la mise en place de factures électroniques est néfaste d’un point de vue des émissions de GES à partir du moment où 35 % des factures sont imprimées par les usagers. De même, les facilités introduites par les pratiques commerciales en ligne augmentent la propension à consommer, et même à se déplacer.
On parle d’effet rebond lorsqu’un gain en efficacité d’un produit ou d’un service se traduit par une augmentation de sa demande, qui peut à terme annuler voire dépasser les gains unitaires. Ces effets ne sont pas spécifiques à l’univers numérique : par exemple en France entre 1990 et 2012 la consommation au kilomètre des voitures particulières a diminué de 20 % en moyenne, et pourtant la consommation globale du transport routier a augmenté de 13 % et du kilométrage total parcouru. L’évaluation des effets rebond dans le domaine des technologies numériques est récente et incomplète, mais ces effets sont bien réels [6], [14]. Par exemple, les services numériques de covoiturage laissent augurer des gains très importants en matière de réduction des GES pour les déplacements covoiturés. Pourtant, les gains attendus sont en grande partie absorbés par les effets rebond directs comme le montre une étude de l’Ademe. Les effets rebond indirects sont quant à eux très difficiles à quantifier, et absents de cette étude. Il s’agit par exemple d’effets de revenus qui permettent aux consommateurs de dépenser une partie des économies engendrées par une optimisation dans d’autres biens ou services ayant un effet global négatif. Concernant le covoiturage il existe en effet un risque que les économies réalisées par les usagers soient en partie réinvesties dans des produits ou services fortement carbonés comme le transport aérien.

D’une manière générale, les effets rebond sont possibles dès que l’optimisation d’un critère environnemental induit parallèlement une optimisation économique, temporelle ou spatiale. Par exemple les services de vente en ligne nous font gagner du temps qui peut être investi dans d’autres activités potentiellement impactantes. Les effets rebond directs et indirects d’une optimisation peuvent aussi, cumulés, provoquer des changements macroéconomiques (baisse du prix d’une ressources par diminution de sa demande, augmentation de la croissance économique, etc.) qui contribuent eux aussi à annuler les bénéfices. Plus généralement, un des impacts sociétaux majeurs du numérique est son rôle, au travers des mécanismes que nous venons d’évoquer brièvement, dans l’accélération des échanges et des processus. Par exemple, le numérique rend possible le trading haute-fréquence, facilite la gestion de l’approvisionnement en flux tendu, accélère les processus de production et incite à des modes de livraison rapides.
Les TIC entraînent donc une accélération du rythme de la société dans son ensemble, par la systématisation et l’amplification des techniques de production et d’exploitation des ressources [14]. Comme les autres effets indirects, ces effets sont mal connus et très peu étudiés, mais semblent non négligeables et principalement négatifs d’un point de vue environnemental. Il serait donc nécessaire de les prendre en compte en amont dans le pilotage des processus d’innovation et d’industrialisation [11].

Agir ?

L’urgence climatique, la pollution et l’effondrement de la biodiversité nécessitent en particulier, dans tous les domaines, d’aller très vite vers une réduction drastique des émissions de GES [32]. Cela implique d’établir des priorités d’action claires, et de concentrer une part importante de nos efforts à ces questions.
Comment cela pourrait se concrétiser dans le monde de la recherche et de l’enseignement en lien le numérique ?

Recherche

Sans remettre en cause les apports réels des technologies numériques dans la société, participant à notre confort et finalement notre bien-être, il est important de garder en tête les coûts environnementaux associés (pollution, destruction des écosystèmes, réchauffement climatique, etc.). D’une manière générale, la notion de progrès doit être questionnée par rapport à la question environnementale, et ne doit pas se résumer au seul progrès technique. Aujourd’hui de nombreux chercheurs en informatique n’arrivent plus à vivre avec cette dissonance cognitive : « ajouter une publication à mon palmarès est bénéfique pour ma carrière mais cela ne signifie-t-il pas aussi contribuer au progrès technique, et donc de manière indirecte à la destruction de l’environnement ? » L’urgence environnementale a le mérite remettre les questions d’éthique scientifique au centre des préoccupations : les progrès techniques et scientifiques sont-ils vraiment tous souhaitables ? Si ces questions mériteraient un article complet, en tant que chercheurs nous ne pouvons nier notre participation à l’accélération du progrès technique, notre responsabilité dans la production de solutions technologiques, et le rôle de nos innovations souvent encouragées pour asseoir une domination économique [8]. Compte tenu de la situation environnementale, ne devrions-nous pas redistribuer les efforts à destination de choix technologiques responsables et compatibles avec, sinon dirigés vers, les questions environnementales [10] ?

Comme nous l’avons évoqué précédemment, pour évaluer les impacts environnementaux du numérique nous devons améliorer notre compréhension des systèmes sociaux et environnementaux, et de leurs interactions. Les outils numériques servent depuis longtemps à appréhender les systèmes complexes (les phénomènes biophysiques par exemple). Nous devons utiliser ces capacités de simulation, de modélisation et d’analyse au service de la cause environnementale, afin de donner la priorité aux innovations durables.
Une autre priorité est de réfléchir à des alternatives technologiques sobres, selon une approche systémique technique, sociale, environnementale, et donc trans-disciplinaire. Cette sobriété permettra non seulement de réduire nos impacts environnementaux mais aussi d’augmenter notre résilience face aux crises environnementales futures, qui semblent pour partie inévitables. Le numérique ne doit pas accroître notre fragilité face à ces questions mais devra au contraire accompagner les changements et les adaptations à venir.
Le principe de précaution devrait aussi s’appliquer aux technologies du numérique : les conséquences sociales et environnementales, ou les conséquences sur la santé d’une technologie devraient être évaluées avant que celle-ci soit largement déployée, c’est-à-dire l’inverse de ce qui est pratiqué aujourd’hui. Le dernier exemple en date est celui de la technologie 5G qui est imaginée et déployée sans précaution [29, 35].

Enseignement

Alors qu’étudiants et enseignants font grève ou signent un manifeste [21] pour inciter « tous les acteurs de la société à jouer leur rôle », les besoins en formation sur les questions environnementales et socio-environnementales sont grandissants. L’article 55 du Grenelle de l’environnement indiquait déjà en 2009 : «L’éducation au développement durable est portée par toutes les disciplines et intégrée au fonctionnement quotidien des établissements scolaires. Elle contribue, à travers ses dimensions éthiques et sociales, à la formation citoyenne.»
Dans l’enseignement supérieur il n’est pas toujours simple de trouver une place dans les maquettes d’enseignement pour évoquer ces questions, et cela impose également de convaincre le responsable de formation de l’importance de ces enjeux. Agir c’est aussi faire pression auprès de celui-ci avec l’aide d’autres enseignants ou des associations étudiantes. En attendant il est toujours possible d’évoquer ces questions dans les volumes horaires actuellement en place. Cela permettrait de toucher de nombreux étudiants, par exemple 50 000 personnes par an si les nouveaux étudiants en licence scientifique étaient sensibilisés, ou encore 45 000 étudiants en informatique (en 2017-2018). Dans le numérique spécifiquement, les besoins de formation sont grands : impact du numérique, usages à adapter, choix des services et fournisseurs sur critères environnementaux, analyses de cycle de vie, éco-conception logicielle,  co-conception de service, etc.


Reste la question de la légitimité de l’enseignant-chercheur à traiter ces questions. Il convient d’abord de rappeler que celui-ci doit régulièrement bâtir des cours sur des thématiques dont il n’est initialement pas expert, alors pourquoi pas sur des sujets liés au développement durable ? De plus les aspects environnementaux peuvent être abordés sous d’autres formes que celle du cours académique : ateliers participatifs, projets bibliographiques, résolution de problèmes ayant pour leitmotiv des problématiques environnementales, etc. En dernier recours il reste possible de faire appel à une personne extérieure pour réaliser ou aider à mettre en place ce type d’enseignement ; par exemple, le Groupement de Service (GDS) du CNRS EcoInfo constitue un bon interlocuteur [17].

Les enjeux de formation dans le secondaire sont importants car ils ont le potentiel, sinon de former, du moins de sensibiliser la plupart des futurs citoyens. Si les questions environnementales sont bien abordées dans certaines disciplines scientifiques existantes, les impacts spécifiques du numérique ne sont pas traités. Le futur CAPES d’informatique sera peut-être une opportunité pour intégrer ces aspects.

Conclusion

Imaginer les impacts environnementaux et le rôle du numérique dans un
avenir plus ou moins proche soulève un certain nombre de questions. Quelles (nouvelles) technologies seront adoptées (5G, véhicules autonomes, réalité virtuelle, intelligence artificielle, internet des objets, etc.) ? Comment le taux d’équipement dans certains pays [18] va-t-il évoluer ? Quels seront les gains en efficacité énergétique ? Il n’existe à ce jour pas de réponses complètes et définitives à ces questions. Des projections moyens termes indiquent que la part du numérique dans la consommation globale d’électricité sera probablement supérieure à 20 % [24] en 2030, mais ce chiffre peut varier de 8 % à 50 % selon les hypothèses. Il est clair dans tous les cas que la tendance n’est pas à la sobriété numérique, avec les coûts socio-environnementaux associés que l’on connaît.

Diverses structures [18, 1, 9, 7, 16] sont nées ces dernières années d’une
prise de conscience des impacts environnementaux directs du numérique et proposent chacune des actions pour les évaluer ou les diminuer. Parmi elles, le GDS EcoInfo [17], créé par les instituts d’informatique (INS2I) et d’écologie (INEE) du CNRS en 2012, a la particularité de regrouper des membres du secteur académique (CNRS, Inria, Universités, etc.). EcoInfo réalise depuis de nombreuses années des travaux en lien avec l’évaluation des effets environnementaux directs du numérique (conférences, audits, actions de sensibilisation, expertises) à destination de diverses structures (entreprises, Ademe, ministères, etc.). Mais la complexité des effets du numérique et leur importance nous pousse à aller plus loin ; l’objectif dans un avenir proche est de compléter ces activités de service par un projet de recherche multidisciplinaire et des actions de formation allant dans le sens des pistes évoquées plus haut.